CS250P: Computer Systems Architecture Moore's Law

Sang-Woo Jun Fall 2023

Conventional performance scaling

□ Traditional model of a computer is simple

- Single, in-order flow of instructions on a processor
- Simple, in-order memory model
- Large part of computer architecture research involved mannaning this abstraction while improving performance

Memory

Data

- Transparent caches, Transparent superscalar scheduling,
- Same software runs faster tomorrow
- (Slow software becomes acceptable tomorrow)
- Driven largely by continuing march of Moore's law

Moore's Law

- □ What exactly does it mean?
- □ What is it that is scaling?

Moore's Law

Typically cast as:

"Performance doubles every X months"

□ Actually closer to:

"Number of transistors per unit cost doubles every X months"

Moore's Law

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year.

[...]

Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.

-- Gordon Moore, Electronics, 1965

Why is Moore's Law conflated with processor performance?

Dennard Scaling: From Moore's Law to performance

- Power density stays constant as transistors get smaller"
 - Robert H. Dennard, 1974

IIntuitively:

- \circ Smaller transistors \rightarrow shorter propagation delay \rightarrow faster frequency
- \circ Smaller transistors \rightarrow smaller capacitance \rightarrow lower voltage
- \circ Power \propto Capacitance \times Voltage² \times Frequency

Moore's law \rightarrow Faster performance @ Constant power!

Single-core performance scaling projection

(Slightly) more accurate processor power consumption Gate-oxide Stopped scaling stopped scaling due to leakage $Power = (ActiveTransistors \times Capacitance \times Voltage² \times Frequency)$ Dynamic power Total power consumption with constant frequency Dynamic Power Leakage Power Active Power + (Voltage × Leakage) Power Minimum Active Power oow er des ign high performance design us ing high Vt using low Vt. Static power 0.8 1.2 0.2 0.4 0.6 1.4

Vdd (V)

https://www.design-reuse.com/articles/20296/power-management-leakage-control-process-compensation.html

End of Dennard Scaling

Even with smaller transistors, we cannot continue reducing power
 What do we do now?

Option 1: Continue scaling frequency at increased power budget

- Chip quickly become too hot to cool!
- Thermal runaway:

Hotter chip \rightarrow increased resistance \rightarrow hotter chip \rightarrow ...

* "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

Option 2: Stop frequency scaling

Danowitz et.al., "CPU DB: Recording Microprocessor History," Communications of the ACM, 2012

Looking back: change of predictions

Kogge et. al., "Yearly update : exascale projections for 2013,"Sandia National Laboratoris, 2013

But Moore's Law continues beyond 2006

Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) The data visualization is available at OurWorldinData.org, There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser

State of things at this point (2006)

□ Single-thread performance scaling ended

- Frequency scaling ended (Dennard Scaling)
- $\circ~$ Instruction-level parallelism scaling stalled ... also around 2005

Moore's law continues

- \circ Double transistors every two years
- What do we do with them?

Crisis averted with manycores?

Crisis averted with manycores?

What happened?

Where To, From Here?

□ The number of active transistors at a given time is limited

- We won't get much performance improvements even if Moore's law continues
- $\circ~$ We need to make the best use of those active transistors!

Where To, From Here?

Potential Solution 1: The software solution

- Write efficient software to make the efficient use of hardware resources
- No longer depend entirely on hardware performance scaling
- "Performance engineering" software, using hardware knowledge

□ Solution 2: The specialized architectural solution

- Chip space is now cheap, but power is expensive
- Stop depending on more complex general-purpose cores
- Use space to build heterogeneous systems,
 with compute engines well-suited for each application

The Bottom Line: Architecture is No Longer Transparent

- Optimized software requires architecture knowledge
- □ Special-purpose "accelerators" (GPU, FPGA, ...) programmed explicitly
- Even general-purpose processors implement specialized instructions
 - Single-Instruction Multiple Data (SIMD) instructions such as AVX
 - $\circ~$ Special-purpose instructions sets such as AES-NI